1-planar graph - definição. O que é 1-planar graph. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é 1-planar graph - definição


1-planar graph         
  • cocktail party graph]] ''K''<sub>2,2,2,2</sub>
  • Coloring the vertices and faces of the triangular prism graph requires six colors
In topological graph theory, a 1-planar graph is a graph that can be drawn in the Euclidean plane in such a way that each edge has at most one crossing point, where it crosses a single additional edge. If a 1-planar graph, one of the most natural generalizations of planar graphs, is drawn that way, the drawing is called a 1-plane graph or 1-planar embedding of the graph.
Null graph         
GRAPH WITHOUT EDGES (ON ANY NUMBER OF VERTICES)
Empty tree; Empty graph; Null Graph; Null tree; Singleton graph; Edgeless graph; Order-zero graph
In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph").
Turán graph         
  • The [[octahedron]], a 3-[[cross polytope]] whose edges and vertices form ''K''<sub>2,2,2</sub>, a Turán graph ''T''(6,3). Unconnected vertices are given the same color in this face-centered projection.
GRAPH
Turan graph; Cocktail party graph; Octahedral Graph; Octahedral graph
The Turán graph, denoted by T(n,r), is a complete multipartite graph; it is formed by partitioning a set of n vertices into r subsets, with sizes as equal as possible, and then connecting two vertices by an edge if and only if they belong to different subsets. Where q and s are the quotient and remainder of dividing n by r (so n = qr + s), the graph is of the form K_{q+1, q+1, \ldots, q, q}, and the number of edges is